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Many conservationists contend that economic growth and biodiversity conservation are incompatible goals.
Some economists contest this viewpoint, arguing that wealthier countries have the luxury of investing more
heavily in efforts to conserve biodiversity. Under this assumption, we expect a U-shaped relationship
between per capita wealth and proportion of species conserved. We test this environmental Kuznets curve
(EKC) using estimates of per capita income and deforestation rates (index of biodiversity threat) for 35
tropical countries. A prior analysis [Dietz, S., Adger, W.N., 2003. Economic growth, biodiversity loss and
conservation effort. Journal of Environmental Management, 68:23–35] using conventional regression
techniques failed to provide any support for the parabolic relationship predicted by the EKC hypothesis. Here,
we introduce the use of quantile regression and spatial filtering to reanalyze this data, addressing issues of
heteroskedasticity and spatial autocorrelation. We note that preliminary analysis using these methods
provides some initial evidence for an EKC. However, a series of panel analyses with country-specific dummy
variables eliminated or even reversed much of this support. A closer examination of conservation practices
and environmental indicators within the countries, particularly those countries that drove our initial support,
suggests that wealth is not a reliable indicator of improved conservation practice. Our findings indicate that
an EKC for biodiversity is overly simplistic and further exploration is required to fully understand the
mechanisms by which income affects biodiversity.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction
The enormous scope of humanactivities (Vitousek et al.,1997; Pimm,
2001) poses a major threat to biodiversity. Globally, species are
disappearing 1000s of times faster than they did historically (Pimm
et al., 1995). Something on the order of 0.5% (Pimm et al., 1995) to 2%
(Rosenweig, 2003) of all species are committed to extinction annually
through tropical deforestation alone. Half of all species could be
committed to extinction within the next few decades (Pimm and
Raven, 2000;Myers andKnoll, 2001).Meanwhile, the humanpopulation
continues to grow by ~2% annually (Cohen, 1995) and the global
economy expands even faster (Raskin et al., 1998).

A number of scholars have argued that there is a conflict between
economic growth and biodiversity conservation (Chambers et al.,
2000, Czech, 2003; Trauger et al., 2003), suggesting that increased
growth of the human economy implies increased overshoot of global
biocapacity (Wackernagel et al., 2002). These conservationists
contend that, while alleviating poverty in lesser-developed countries
(Myers and Lanting, 1999; Adams et al., 2004), we must move toward
a steady state economy (Czech, 2000; Myers, 2000) and thereby
minimize the wholesale appropriation of natural ecosystems and loss
of species (Chambers et al., 2000). Some economists take the opposing
1 614 292 2030.

ll rights reserved.
view that economic growth facilitates environmental protection (e.g.,
Grossman and Krueger, 1991, 1995; Beckerman,1992; Hollander, 2003).
More specifically, they argue that this is achieved when increases in per
capita wealth free people to invest in environmental quality. They
hypothesize an inverted U-shaped relationship between economic
prosperity (per capita GDP) and environmental protection. (Here,
however, we expect a U-shape, as positive environmental quality in our
response variable is represented by higher values, as opposed to low
values indicating high quality in several common applications of the
EKC.) Testing this so-called environmental Kuznets curve (EKC) can
help reconcile these conflicting views. (For a broad introduction to the
EKC literature, see Ecological Economics' special issue 25(2) 1998, as
well as the more recent literature reviews in Stern, 2004 and
McPherson and Nieswiadomy, 2005).

In the context of biodiversity conservation, the EKC predicts that,
given some original number of species, the proportion of those species
conserved will be close to unity within countries at the low end of the
prosperity continuum. As per capita GDP increases, species diversity
will plummet. However, once a certain economic level is attained,
countries are presumably wealthy enough to invest in conservation
practices and this should cause the proportion of species conserved to
rise again (Fig. 1). Evidence for this parabolic EKC would suggest that
continued increases in prosperity could help solve rather than
exacerbate the biodiversity crisis. However, whether an EKC for
biodiversity exists remains open to question. The EKC, derived from a
landmark paper on income inequality (Kuznets, 1955) and adapted to
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Fig. 1. Three hypothetical forms of the relationship between per capita income and
proportion of species conserved within a given country (after Fig. 1 in Dietz and Adger,
2003). Falling and rising limb portions of the parabolic environmental Kuznets curve
(EKC) are indicated.
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the question of environmental degradation by Grossman and Krueger
(1991), has been applied to a variety of environmental indicators.
However, it has generally been judged to be valid only in cases where
environmental damage is reversible (reviewed by Dietz and Adger,
2003). For this reason, Dietz and Adger argued that an EKC for
biodiversity was a theoretical impossibility. They argued that anthro-
Fig. 2. Panel (a): reconstruction of the graph of Dietz and Adger (2003) using the same
data and scaling as presented in their paper. The predicted proportion of species
conserved (Eq. (2)) as a function of per capita GDP for 35 tropical forest countries,1972–
1992. Panel (b): rescaling the same data emphasizes parabolic pattern. The least-
absolute-deviation regression curve, corresponding to the 50th quantile, is shown for
each simple model (parabolic (Eq. (3)), hyperbolic (Eq. (4)), and linear (Eq. (5))).
pogenically driven extinctions vastly outpace speciation events,
rendering biodiversity losses irreversible. Czech (2008) elaborates
this criticism, further adding that restoration of habitats, which might
lead to species recovery, is exceptionally difficult, a fact which we do
not dispute.) Dietz and Adger thus chose not to test for a parabolic
relationship between wealth and biodiversity. Czech (2008) offers
further critique of the conceptual weaknesses of an EKC for
biodiversity, most notably in outlining the competitive exclusion
problem imposed by the laws of physics and ecology which places
undeniable limits on growth. In the case of biodiversity, this problem
is exacerbated as economic growth tends to lead directly to
competitive exclusion of nonhuman animals and plants, but the
accompanying environmental problems also cause indirect biodiver-
sity declines (Czech, 2008).

Nonetheless, while many conservationists argue that the EKC has
essentially been dismissed from academic circles (Stern, 2004; Czech,
2008), those same scientists acknowledge that policy makers (and
many economists) have not yet reached the same conclusion. We
agree with Czech's argument: that the necessary policies to preserve
biodiversity will never be achieved unless the policy community first
recognizes the fundamental conflict between economic growth and
biodiversity (2008). For these reasons, and because we argue that an
EKC for biodiversity is theoretically possible (albeit perhaps very
difficult to achieve), we reconsider here the evidence for an EKC for
biodiversity. We begin by noting that Dietz and Adger (2003)
inadvertently obscured a parabolic relationship by the way they
graphed their data (Fig. 2a). A strongly parabolic pattern becomes
evident when the y-axis is rescaled (Fig. 2b). Next, we extend the
analysis of their dataset using an alternative to standard regression,
specifically quantile regression (Koenker, 2005). We challenge the
theoretical objection of Dietz and Adger (2003) to the possibility of an
EKC and we test specifically for a parabolic relationship. An initial
analysis provides support for such a relationship. However, we
question whether this support is just an artifact of ecologically
unsustainable economies among the richest countries. To explore this
possibility, we perform a series of panel analyses including country-
specific dummy variables. These analyses eliminate or even reverse
most of the initial evidence for a U-shaped curve.
Table 1
Comparison of data and methodology between Dietz and Adger (2003), on which this
study was based, and the current study, Mills and Waite (2009).

Dietz and Adger, 2003 Mills and Waite, 2009

Data
Countries 35 tropical countries from

Central America, South
America, Africa, and Asia

35 tropical countries from Central
America, South America, Africa,
and Asia

Range 1972–1992 1972–1992
Dependent
variable

Proportion of species
conserved

Proportion of species conserved

Economic
variables

GDP per capita GDP per capita, (GDP per capita)2

Other variables Population change,
population density, linear
time trend (year), forest
area, democracy index

Population change, population
density, linear time trend (year),
forest area, democracy index,
spatial covariates

Methodology
Models Linear, hyperbolica Linear, hyperbolic, parabolic
Spatial
autocorrelation
correction

None Borcard–Legendre PCNM
spatial filtering

Regression OLS (conventional
regression)

Least-absolute-deviation quantile
regression

Panel analyses Random and fixed effects
(country-specific)

Fixed effects (both country-
specific and region-specific analyses)

a Dietz and Adger (2003) do not test the parabolic (EKC) model because they argue
that an EKC for biodiversity is a theoretical impossibility.
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2. Methods

Readers should note that, for consistency in our reanalysis, we have
tried to mimic the general methodology of Dietz and Adger (2003) as
closely as possible. We do so despite the fact that we are not in total
agreementwith their methods. In particular, the choice and number of
countries examined, the choice of additional variables included, the
use of 1972 as the base year for time series, and the use of 0.25 as the
z-value for species–area calculations give rise to a variety of concerns.
We address some of these issues in subsequent sections and propose
to consider others in future work. (For a quick comparison of data and
methods between this paper and Dietz and Adger, see Table 1. For
more information on the specifics of data collection and compilation,
please see Dietz and Adger, 2003).

2.1. Tropical deforestation and biodiversity losses

We use the species–area relationship (SPAR), S=cAz, from island
biogeography theory (MacArthur and Wilson, 1967) to predict the
proportion of species persisting following deforestation. In this classic
equation, S is the number of species persisting at equilibrium (i.e., when
the opposing forces of extinction and colonization reach the balance
point), A is area of habitat, and c and z are constants. Log-transformed,
this relationship is a linear equation, log(S)=log(c)+zlog(A),where log
(c) is the y-intercept and z is the slope. Parameter z thus describes how
species richness changes with loss (or gain) in the amount of habitat
available. A larger z-value translates into a larger number of predicted
extinctions for a given area loss.Manyempirical studies of the SPAR in an
island archipelagic context have yielded z-values clustering around 0.25
(Rosenzweig, 1995; Pimm and Raven, 2000). Following Dietz and Adger
(2003), we assume z=0.25 and use estimates of annual deforestation
to predict the proportion of species remaining as a function of the
proportion of land area remaining.

The proportion of species conserved following habitat loss can be
predicted by dividing the expression for the equilibrium species
richness based on the amount of habitat remaining at time t,

St = cAz
t

by the expression for the original species richness,

S0 = cAz
0;

which yields:

St
S0

=
At

A0

� �z

: ð1Þ

We let φ(i, t) represent the predicted proportion of species
conserved in country i as a function of the amount of tropical forest
remaining in year t in relation to the amount in the base year, 1972.
Substituting into Eq. (1), the ratio of the predicted number of species
conserved in country i in relation to the species richness in the base
year is:

u i; tð Þ = St ið Þ
S1972 ið Þ =

Ft ið Þ
F1972 ið Þ

� �0:25
; ð2Þ

where F is the amount of tropical forest cover in country i in a given
year. The left hand side of this expression is the dependent (response)
variable for all analyses.

2.2. Quantile regression

Conventional regression methods, as used by Dietz and Adger
(2003), estimate rate of change in the mean of the distribution of the
response variable, as a function of one or more predictor variables.
Fitted curves may be linear, hyperbolic, parabolic, and so on.
Regardless of which functional form is used, the function is fitted
only to the mean of the distribution. This conventional approach may
be inadequate because it ignores all other regions of the distribution.
This approach may be especially inadequate in cases where variance
in the response variable is heterogeneous. Such is the case in our
dataset. A quick visual assay of the data is enough to demonstrate this
fact and suggest the need for a more thorough analysis (Fig. 2b).
Fortunately, an alternative method, called quantile regression, can be
used to estimate the relationship between one or more predictor
variables and the response variable for all parts of the distribution (for
an excellent primer see Cade and Noon, 2003). Here, we use quantile
regression to explore how the predicted proportion of species
conserved varies as a function of per capitawealth and other predictor
variables.

We begin by considering simple models where per capita income
G (data from Penn World Table, Heston et al., 2002) is the only
predictor variable.Wemodel the predicted species richness conserved
(relative to the base year), as expected under the EKC hypothesis, as a
parabolic function of G:

u i; tð Þ = α + β1 lnG i; tð Þþβ2 lnG i; tð Þ½ �2 + e i; tð Þ: ð3Þ

We also model the proportion of species conserved using a
hyperbolic function,

u i; tð Þ = α + β1 1 = lnG i; tð Þ½ � + e i; tð Þ; ð4Þ

and a linear function,

u i; tð Þ = α + β1 lnG i; tð Þ + e i; tð Þ: ð5Þ

Next, we consider three full models, incorporating several
additional predictor variables used by Dietz and Adger (2003)
(though other potentially important explanatory variables should be
considered in future work (see, for example, Brown and Pearce, 1994
for detailed exploration of various factors influencing deforestation)).
We model the proportion of species conserved, as expected under the
EKC hypothesis, as a parabolic function,

u i; tð Þ = α + β1 lnG i; tð Þ + β2 lnG i; tð Þ½ �2 + β3C i; tð Þ
+ β4P i; tð Þ + β5T i; tð Þ + β6F i; tð Þ + β7D i; tð Þ + e i; tð Þ

ð6Þ

where C is change in human population as a percentage of the
previous year's population (Penn World Table); P is population
density in people per hectare (Penn World Table); T represents the
year; F is forest area in hectares (data from FAO Production Yearbook);
and D represents the scaled democracy value assigned to each country
based on political rights and civil liberties (indices taken from
Freedom House annual comparative survey tables available at
http://www.freedomhouse.org to create a scale from 2 to 14, with
14 being most democratic).

We also model the proportion of species conserved using a
hyperbolic,

u i; tð Þ = α + β1 1= lnG i; tð Þ½ � + β2C i; tð Þ
+ β3P i; tð Þ + β4T i; tð Þ + β5F i; tð Þ + β6D i; tð Þ + e i; tð Þ ð7Þ

and a linear function,

u i; tð Þ = α + β1 lnG i; tð Þ + β2C i; tð Þ + β3P i; tð Þ
+ β4T i; tð Þ + β5F i; tð Þ + β6D i; tð Þ + e i; tð Þ

ð8Þ

By including Eqs. (3) and (6), we test for a parabolic relationship
between per capita income and predicted proportion of species

http://www.freedomhouse.org
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conserved, as predicted by the EKC hypothesis. By contrast, Dietz and
Adger considered only the hyperbolic (Eq. (7)) and linear functions
(Eq. (8)). They chose not to include the parabolic model (Eq. (6)),
arguing that the rising limb (Fig. 1) of the EKC was a theoretical
impossibility. They thus chose not to perform a direct test of the EKC.
They implied that the rising limb could occur only if the rate of
speciation were to exceed the rate of extinction due to deforestation.
We dispute this reasoning.

To see why the rising limb is possible after all, consider the
definition of φ(i, t). This dependent variable is not the predicted
number of species remaining at time t relative to those extant in the
base year. Instead, it is the predicted number of species persisting
ultimately (i.e., once equilibrium is reached) relative to those extant
in the base year. The key is the lag between deforestation and
extinction. The relaxation to an equilibrium number of species in a
remnant forest fragment can be modeled as an exponential decay
(=exp[−kt]), where the annual proportionality constant, k, may take
a value on the order of 0.025 (Brooks et al., 1999). At this rate, it would
take over 25 years to realize half of the predicted extinctions due to
the deforestation during any given year. It would take nearly a century
(~92 years) to realize 90% of the predicted extinctions. For larger areas
of remnant forest, the rate of extinction is reduced and so it may take
more than a century to realize half of the predicted extinctions (Ferraz
et al., 2003). This gradual decay suggests that the rising limb is
possible. If a country were to get rich quickly and begin a reforestation
program, many species committed to extinction by past deforestation
could conceivably be spared. (Even natural forest recovery can allow
for recolonization, although it may take decades for secondary forest
to become suitable habitat for forest-obligate species (Ferraz et al.,
2003; but see Harris and Pimm, 2004). There is also considerable
literature describing how non-forest habitats may support forest
species (see, for example, Daily et al., 2001). This would provide yet
another avenue for recovery of species committed to extinction.) That
is, commitment to extinction is partially reversible and the rising limb
could result. We thus include the parabolic functions (Eqs. (3) and
(6)) in our analysis.

Throughout all analyses, we use least-absolute-deviation quantile
regression to quantify the parabolic, hyperbolic, and linear relationships,
usually for all quantiles, 1st, 2nd, …, 99th. We evaluate whether the
predicted proportion of species conserved is a demonstrably parabolic
function of per capitawealth, as predicted by the EKChypothesis, for any
portion of the distribution. We use Blossom Statistical Software
(2003.02) to perform the analyses. We use the regression quantile
rank-score test (Koenker andMachado,1999) to compare pairs of full vs.
restricted models and report p-values (two-tailed) based on 10,000
iterations of this goodness-of-fit test.

2.3. Panel analysis

The dataset includes a time series for each country, with series
comprising similar numbers of years. To analyze this unbalanced
panel, we perform a series of formal panel analyses, using fixed effects
models. In doing so, we examinewhether differences among countries
(and regions) were the driving factor behind our initial evidence for
an EKC.

We assume, initially, that each country could have its own separate
influence and we thus include a dummy variable Ni specific to each
time series:

u i; tð Þ = α + β1 lnG i; tð Þ + β2C i; tð Þ + β3P i; tð Þ
+ β4T i; tð Þ + β5F i; tð Þ + β6D i; tð Þ + N2 + N3 + N + N35 + e i; tð Þ:

ð9Þ

Note that one country's time series is arbitrarily left out of the
equation to serve as a reference group. We conduct the panel analysis
for all quantiles, 1st through 99th.
We then perform a regional panel analysis, assigning dummies to
regions, rather than countries:

u i; tð Þ = α + β1 lnG i; tð Þ + β2C i; tð Þ + β3P i; tð Þ
+ β4T i; tð Þ + β5F i; tð Þ + β6D i; tð Þ + R2 + R3 + R4 + e i; tð Þ: ð10Þ

Here, R2 refers to Central America, R3 to South America, and R4 to
Asia. (Africa serves as the reference group.) These regions are assigned
based on the groupings provided in Dietz and Adger (2003). Ideally,
these regions should serve to form groups of countries ecologically
similar enough to share a single fixed error effect. By assigning region-
specific dummies, we evaluate whether differences among regions
can produce potentially misleading support for the EKC.

Next, to make inferences about each region, we perform a separate
analysis for each of the four regions. We do so for all quantiles both
with and without country-specific dummy variables. This analysis
evaluates whether differences among countries within a region can
produce potentially misleading support for the EKC.

2.4. Spatial autocorrelation

Finally, we use spatial filtering techniques to evaluate whether the
above analyses were confounded by spatial autocorrelation (for a unique
example of how to account for autocorrelation in EKC analyses see
McPhersonandNieswiadomy, 2005). This is necessary due to the fact that
manyof the countries in ourdataset aredistinguishable fromoneanother
only by geopolitical borders. In many cases, neighboring countries are
very similar in terms of their ecosystems and species and may therefore
be more closely related to each other than to the rest of the dataset.

Failure to correct for these spatial relationships can inflate Type 1
errors, causingus todetect a significant relationshipwhere in fact there is
none. (Diniz-Filho et al., 2003 provide an excellent introduction to the
theoretical background and ecological implications of spatial autocorre-
lation; see also Dale and Fortin, 2002.) Some ecologists have even gone
so far as to suggest that the spatial structure inherent in ecological data
creates ‘red herrings’ and results in systematic bias in our interpretation
and understanding of ecological processes (Lennon, 2000).While not all
ecologists share this extreme view, there is growing acceptance of the
notion that ecological analyses should be corrected for spatial
autocorrelation.

Here we use a particular method of spatial correction known as
spatial filtering. Thismethod is particularly useful as it analyzes spatial
structure and produces a series of covariates which account for this
structure and can then be easily incorporated into any statistical
model (see Griffith and Peres-Neto, 2006 for an introduction to the
use of spatial filters in ecology). This allows spatial filtering to be
flexibly applied with a wide range of analyses. Here, for instance,
spatial filtering allows us to address spatial structure in tandem with
quantile regression.

We use an equidistance cylindrical projection map in ArcGIS
(version 9.2) to establish a center point for each country in the
dataset. We then input the latitude and longitude data for these
centroids into SAM (Rangel et al., 2006) and create a matrix of
pairwise distances for all countries. To ensure that we use the shortest
distance between each pair of countries, we create two matrices: the
first uses the standardmap centered at 0° longitude; the second uses a
map re-centered at 180° longitude (effectively allowing us to calculate
distances around the back of the globe). For each distance pair, we
select the shorter of these two distances to create our final matrix.

We then use R (R Development Core Team, 2008) to apply the
Borcard–Legendre principal coordinates of neighbor matrices (PCNM)
spatial filtering technique (Borcard and Legendre, 2002). The resulting
spatial covariates S1 and S2 are added to the model as additional
variables, such that Eq. (3), for example, becomes:

u i; tð Þ = α + β1 lnG i; tð Þþβ2 lnG i; tð Þ½ �2 + β3S1 + β4S2 + e i; tð Þ ð11Þ



Fig. 3. Quantile regression curves for each of the three simple models (Eqs. (3)–(5)):
parabolic (top), hyperbolic (middle), and linear (bottom). Starting from bottom of each
graph, curves represent the 5th, 10th, 50th, 90th, and 95th quantiles. Data points
predicted by Eq. (2).
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We then perform all analyses a second time with the spatial
covariates included.

3. Results

3.1. Non-panel analysis

Fig. 2b shows the fitted curves, at the 50th quantile, for all three
simple models, parabolic, hyperbolic, and linear (Eqs. (3)–(5)). The
three regression curves are virtually indistinguishable. This graph
highlights the limitation of using the conventional approach of fitting
a functional form to the mean of the distribution, where variance in
the response variable is heterogeneous.

Fig. 3 shows the fitted curves for the 5th, 10th, 50th, 90th, and 95th
quantiles. All three models yield similar results for the upper
quantiles. At lower quantiles, however, the parabolic model clearly
provides the best description of the distribution of the response
variable. This is what we might expect under the EKC hypothesis.
Extreme data in the lowest quantiles could be expected to map nicely
onto a parabola; however, we have no a priori reason to expect all of
the data to cluster around a single parabola. Rather we might expect
variation in countries' experiences and growth trajectories to create a
distribution of data extending throughout the space between the line
y=1 and parabolas fitted to lower quantiles.

In this exploratory (non-panel) analysis, the simple parabolic
model (Eq. (3)) was significant (pb .05) for all quantiles, 2–97, and
was significantly better (pb .05) than the linear model (Eq. (5)) for all
lower quantiles, 1–50, and for 71–73. This model outperformed the
linear and hyperbolic (Eq. (4)) models for the lowest quantiles.
Similar patterns were found for the full models (Eqs. (6)–(8)): the
parabolic model was significant for every quantile and significantly
better than the linear model for quantiles 2–66 and 71.

3.2. Panel analysis

Results are reported for the dataset excluding India, Sri Lanka, and an
extraneous Bangladesh point. We excluded these countries' time series
because theycontainedoutliers that appear to be anomalous byproducts
of political events (e.g. border conflicts, newly independent countries)
or reporting errors. In most cases, analyses were also performed with
these countries' time series included. However, because the resultswere
qualitatively similar, we describe just one set of findings.

When country-specific dummy variables were included, the
parabolic model was significant (pb .05) for all quantiles and
significantly better (pb .05) than the linear model for many quantiles
(3, 5–7, 18–86). However, the sign of the coefficient for G2 was
negative for all quantiles in both tests, indicating an inversion of
parabolic shape, from U-shaped to hump-shaped. This analysis,
therefore, provides no support for the EKC.

When region-specific dummy variables were included, the parabolic
modelwas significant formany quantiles (2–77, 94–96) and significantly
better than the linear model for quantiles 1–78. Additionally, the
parabola exhibits the proper EKC curvature (i.e., coefficient of G2N0)
for many quantiles (1–84, 89–93, 98). Thus, we found strong support for
the EKC when region, rather than country-specific, dummies were
included. This support held even when we removed from the analysis
South America, the region with the largest dummy variable coefficient
(coefficient of G2N0 for all quantiles; parabolic model significant: 3–99;
significantly better than linear: 2–69, 75).

Fig. 4 describes patterns of curvature (U- versus hump-shaped) and
significance (parabolic versus linearmodel) for all quantiles. Results are
shown for eight analyses, one with and one without country dummies
for each of the four regions. Shading indicates a U-shaped, EKC-like
curve (i.e., coefficient ofG2N0). All regions except SouthAmerica exhibit
some range in which the model without dummy variables is both
significant and curved in the EKC direction. However, with country-
specific dummies included, only Africa exhibits this kind of support for
the EKC and not for any of the lower quantiles. The other three regions
provide an abundance of evidence for curvature in the opposite
direction from that predicted by the EKC hypothesis.

3.3. Spatial autocorrelation

Finally, the inclusion of the spatial covariates in our models reveals
that there are indeed spatial relationships among neighboring



Fig. 4. Summary of results of quantile regression with and without country-specific
dummy variables for each of the four regions. Gray shading indicates a U-shaped
parabola, consistent with the EKC; absence of shading indicates a hump-shaped
parabola, in conflict with the EKC. Asterisks indicate that parabolic model was
significantly better than linear model (pb0.05). Red asterisks appear at multiples of 10
to aid visual inspection.
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countries that are not accounted for in any of our previousmodels. Our
results show that the addition of the spatial filter yields models that
are significantly better (pb .05) than the originalmodels.When spatial
covariates are added to the country-specific dummy analysis, the
parabolic model was significant for quantiles 1–94 and significantly
better than the original (no spatial filter) country-specific model for
quantiles 4–9, 11–76, and 78–79. For the region-specific dummy
model, the addition of spatial covariates produced a model that was
significant for quantiles 2–64 and 79–98 and significantly better than
the original region-specific model for quantiles 15–97. However, the
inclusion of the spatial covariates does not qualitatively change the
results or direction of curvature of any of the previous models.

4. Discussion

We began with the non-panel approach to simplify our initial
explorations into quantile regression, but the decision to include it
here rests on the importance of the theoretical questions it raises. In
particular, if use of country-dummies reveals that differences between
countries drive the support for the EKC (i.e. inclusion of country-
dummies eliminates support for the EKC by accounting for differences
between countries), which countries are most influential, and what
differences are driving the relationship? Though this is perhaps
unconventional, we feel that it is appropriate. A thorough exploration
of the intricacies of the EKC relationship is absolutely necessary,
particularly as the EKC is implemented in policy decisions that affect
biodiversity conservation as well as human interests.

Our initial analysis seemed to provide support for an environ-
mental Kuznets curve (EKC) for biodiversity (Fig. 3). This support is
consistent with the possibility that increased per capita GDP leads to a
higher proportion of species conserved via corresponding reduction in
deforestation rate. A few of the richest countries exhibit relatively
slow deforestation over a two-decade period. Superficially, this
suggests that biodiversity conservation could be improved through
economic growth.

However, whenwe performed panel analysis with country-specific
dummy variables included, this support was eliminated or even
reversed, as has been found in other studies (Moran, 2005). The
reversal of evidence was especially dramatic for Asia. Significance was
obtained for every quantilewhen dummy variables were included, but
every quantile exhibited an inverted, hump-shaped curve (Fig. 4), the
opposite of what we expect from the EKC hypothesis. Central and
South America too provided evidence against the EKC when country-
specific dummies were included. Even the strong support for the EKC
in Africa was lost for all of the lower quantiles when country dummies
were included. Because including country-specific dummy variables
routinely eliminated support for the EKC, it appears that differences
among countries really were the driving force behind our initial
support (Fig. 2) as well as that provided by the analysis including
region-specific dummies. Thus, we have no reason to believe our
initial support for the EKC reflects robust improvement in forest
conservation with increasing per capita wealth within countries.

The question remains, though, why we found any support for the
EKC, even in our initial analysis. If adding dummy variables reveals
that support for the EKC was driven by differences between countries,
which countries created this support? To address this question, we
focus on the five richest countries, those presumably most responsible
for the rising limb (Fig. 5). We argue that these countries have not
moved toward genuinely better conservation practices. First, despite
their relative prosperity, these countries have continued to practice
deforestation. Between 1990 and 2000, Mexico and Malaysia lost
more of their forest than did over half of the 35 countries, Venezuela
lost 4.2% of its remaining forest, Brazil lost 4.1%, and even Gabon
experienced a net loss of 0.5% (FAO, 2001). Second, none of the
countries driving the rising limb (Fig. 5) experienced a rebound in
forest cover between 1972 and 1992. Third, two of these countries
have oil-based economies. In 2002, 69% of Gabon's and 73% of
Venezuela's export economy was based on oil (World Bank, 2004).
Hypothetically, these countries could resort to forest clearance when
their oil revenues dwindle. Finally, four of the five richest countries
have the largest ecological footprints among the 35 countries (Loh and
Wackernagel, 2004). The amount of ecologically productive land and
water used in these countries exceeds the “fair Earthshare” (1.8 ha/
person). Only Gabon's footprint (8th largest) falls below this thresh-
old of sustainability, reflecting Gabon's low human density. Thus, our
initial support for the EKC reflects reduced but ongoing deforestation



Fig. 5. Relationship between per capita income and predicted proportion of species conserved for each country within each of the four regions. Each country's time series is depicted
by a different symbol and represents the interval 1972–1992. The richest country within each region is labeled (India, Sri Lanka, and one anomalous point for Bangladesh have been
removed from the upper right panel, Asia).

2093J.H. Mills, T.A. Waite / Ecological Economics 68 (2009) 2087–2095
in the most prosperous countries, whose footprints exceed the global
biocapacity. This initial support appears to be doubly deceptive. It does
not seem to reflect legitimate gains in conservation either within or
beyond the richest countries' borders.

Had our initial support for the EKC been upheld by the panel
analyses, we would still have called for a cautious interpretation. Even
positive results should not be too hastily considered evidence that
increasing wealth is good for biodiversity conservation. The mere
presence of support for or against the EKC tells us nothing about the
causal relationship between per capita GDP and species conservation
(and even less about the connection between economic growth in the
aggregate (GDP) and biodiversity). As we point out, evidence does not
suggest that countries with high per capita income are actually
exhibiting improved conservation practices. Because these countries
are continuing to deforest their lands, we can easily surmise that
income from timber production, etc. may be a large factor contribut-
ing to their increased wealth.

After all, to the extent that increasing wealth comes about through
liquidation of natural capital (i.e., clearance of forest) (Naidoo, 2004),
evidence for the rising limb would not imply genuinely improved
conservation. To see why increasing wealth is achieved through
liquidation of natural capital, consider the connection between
natural trophic structure and the human economy as laid out by
Czech (2000, 2008). Much as higher consumers in the natural world
are dependent upon the primary consumers and producers below
them, light manufacturing depends upon heavy industry which in
turn depends upon agricultural production and resource extraction.
Similarly, there is an associated amount of lower level production
required to sustain the upper levels, thus growth at the top of the
chain implies either growth at the bottom (i.e. deforestation) or
increased efficiency in the modes of production (Czech, 2000).
Unfortunately, the laws of physics preclude us from ever attaining
perfect efficiency, so growing economies will necessarily entail
increases in resource consumption. (Even so-called information
economies fall prey to this dilemma, as information is only valuable
as it applies to the market, and thereby, to other sources of production
(Czech, 2008)). Thus, if wealth (either in the aggregate or per capita)
is gained via deforestation, it is hard to argue that getting richer leads
to improved forest conservation.

4.1. Future directions

Future work should explore more fully the nature and implications
of the relationship between economic growth (as indicated by
increasing GDP) and biodiversity conservation, as well as the
relationship between prosperity (as indicated by increasing per capita
GDP) and conservation. Only two prior studies have provided any
support for an EKC for biodiversity, and that support was limited to
birds (Naidoo and Adamowicz, 2001; McPherson and Nieswiadomy,
2005) and mammals (McPherson and Nieswiadomy, 2005). Data
availability prevented McPherson and Nieswiadomy from examining
other taxa, but Naidoo and Adamowicz (2001) were able to consider
four additional groups (plants, amphibians, reptiles, and inverte-
brates). For each of these, Naidoo and Adamowicz found the opposite
of what we expect from the EKC: the predicted number of threatened
species increasedwith increasing prosperity (Clausen and York (2008)
find the same result for freshwater and marine fish species). Even the
optimistic forecast for birds and mammals seems dubious. McPherson
and Nieswiadomy (2005) are careful to point out that their results
indicate only the possibility that an EKC may exist for these taxa.
Moreover, while richer countries appear to be doing a better job of
protecting birds andmammals, the richest countries' economies place
themwell above the global sustainability level (Loh andWackernagel,
2004). We speculate that these countries do a good job of protecting
birds and mammals within their national boundaries (Czech et al.
(1998) demonstrate that these two taxa in particular are advantaged
in terms of both their social construction and the amount of political
power endowed to them by various conservation groups), but high
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levels of consumption in developed nations suggest that internal
protection may come at the expense of expropriating resources from,
and thereby jeopardizing, natural ecosystems and species beyond
their borders.

This hypothesis highlights a potential weakness in focusing on
nation-states as a unit of analysis (ClausenandYork, 2008; thoughRudel
and Roper (1997) argue that the imprecision inherent in the use of the
nation-state is offset by the value obtained by considering the influence
of country-wide socioeconomic conditions on deforestation).Moreover,
the idea that richer countries create an illusory appearance of improved
conservation through exploitation of poorer ones is consistent with
world systems theory and international political economic theory, both
of which assert that global structure promotes the redistribution of
resources from producers in the global periphery (less developed
countries) to consumers in the core (developed countries) (Hoffman,
2004; Ehrhardt-Martinez et al., 2002). Ehrhardt-Martinez et al. (2002)
find no connection betweenworld systems theory and deforestation in
their analysis (they attribute their evidence of a deforestation EKC to
urbanization, democracy, and growth of the service sector); however,
this result may be skewed by the fact that their dataset contains no
developed countries (and therefore no “core” nations).

We propose that a full account of each country's consumption (for
example, accounting for a nation's total forest product consumption
rather than just in-country deforestation) may eliminate the existing
evidence for the rising limb (see Rothman, 1998 for an analysis of the
role of consumption in EKCs). Future work could use import/export
data to evaluate whether local gains in forest conservation are offset
by global losses.

We believe the discussion herein is widely applicable to the
question of economic growth and biodiversity in general (i.e. we
would hypothesize that consumption is a key factor regardless of
which aspect of biodiversity you investigate). However, we have truly
examined only deforestation and therefore the forest (and specifically
tropical moist forest) species associated therewith. Wewould venture
to assert that this subset of species represents a disproportionately
important component of all species (after all, Wilson (1988) estimates
that at least half of the world's species are likely contained within
moist tropical forests). Nonetheless, readers should keep in mind that
deforestation is only one aspect of the environmental degradation that
accompanies growing economies, and that this variable inherently
excludes a wide range of species and ecosystem types, each of which
have unique properties and contribute to the functioning of the global
system as awhole.Work that explores other ecosystems and drivers of
biodiversity decline would undoubtedly further our understanding of
the relationship between economic growth and biodiversity.

We also promote work on the following topics. First, hypothetical
reforestation scenarios could be used to evaluate the potential for
sparing species already committed to extinction. Second, our analysis
assumed that the natural world of the future would comprise many
island-like habitats. We thus assumed that the future species–area
relationship (SPAR) could be predicted using a z-value (0.25) for the
island-archipelagic scale, but Rosenzweig (2003) recently argued that
the natural world of the future would comprise a collection of
biogeographically representative reserves. Accordingly, the biogeo-
graphic regionwould be the appropriate scale and the SPAR should be
predicted using a higher z-value (~0.9–1.0). Thus, the predicted
number of species committed to extinction via deforestation will be
nearly proportional to the amount of habitat lost. This would make it
harder to justify economic growth via deforestation. Finally, we have
implicitly assumed that the habitat lost through deforestation is of
representative quality. However, conservation efforts are underway to
set aside biodiversity hotspots (Myers et al., 2000; Myers, 2003;
Mittermeier et al., 2005), areas with high species richness and
irreplaceable ecosystems. Taking these complexities into account will
help refine our understanding of the relationship between economic
prosperity and biodiversity conservation at multiple scales.
5. Conclusion

We promote the use of quantile regression in EKC analyses. Though
we cannot account for all of the factors contributing to the complex
relationship between per capita income and biodiversity, quantile
regression provides a more complete picture of the relationship than
does conventional regression. We think the use of quantile regression
(this study) and autoregressive techniques (this study andMcPherson
and Nieswiadomy, 2005) represent vast improvements in EKC
analysis, and we encourage future workers to combine these tools.

We argue that the presence or absence of evidence for an EKC is
insufficient information on which to draw conclusions regarding the
relationship between income and biodiversity. In particular, we
suggest that rich countries are likely fueling their own consumption
by expropriating resources from poorer nations. This claim requires
further investigation. Current data are sufficient, however, to confirm
that the rich countries in our dataset were not characterized by
improved conservation. In light of this fact, this study strengthens the
arguments being made by Stern (2004), Rothman (1998) and Czech
(2008), that the EKC is not a robust representation of the relationship
between economic growth and environmental quality. We encourage
further exploration into the mechanisms by which differences
between countries may drive apparent support for a biodiversity
EKC, but strongly discourage any use of a biodiversity EKC per se in
policy applications.
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